ПATIBIA UחIVERSITY OF SCIEПCE AПD TECHПOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

department of natural and applied sciences

QUALIFICATION: VARIOUS	
QUALIFICATION CODE: VARIOUS	LEVEL: 6
COURSE NAME: PHYSICAL CHEMISTRY	COURSE CODE: PCH602S
SESSION: NOVEMBER 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Prof Habauka M Kwaambwa
MODERATOR:	Prof Rajaram Swaminathan

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENT
List of Useful Constants
THIS QUESTION PAPER CONSISTS OF 7 PAGES (Including this front page and attachment)

There are 10 questions in this section. Choose the correct answer. Each question carries 2 marks.

1. An ideal gas at $27^{\circ} \mathrm{C}$ is heated at constant pressure until its volume is double. The final temperature is:
A. $54^{\circ} \mathrm{C}$
B. $327^{\circ} \mathrm{C}$
C. $108^{\circ} \mathrm{C}$
D. $654^{\circ} \mathrm{C}$
E. $600^{\circ} \mathrm{C}$
2. Which of the following is not an intensive property?
A. Pressure
B. Temperature
C. Density
D. Heat
E. Molar volume
3. If a gas is heated against a constant pressure, keeping the volume constant, then work done will be
A. Positive
B. Negative
C. Zero
D. Infinity
E. Anywhere between zero and infinity
4. Which one of the following is always positive when a spontaneous process occurs?
A. $\Delta \mathrm{S}_{\text {system }}$
B. $\Delta \mathrm{S}_{\text {surrounding }}$
C. $\Delta S_{\text {universe }}$
D. $\Delta H_{\text {universe }}$
E. $\Delta \mathrm{H}_{\text {surrounding }}$
5. The efficiency of a Carnot engine depends on
A. Working substance
B. Design of the engine
C. Size of engine
D. Type of fuel fired
E. Temperatures of source and sink
6. If $\Delta \mathrm{G}^{\circ}<0$, then K is \qquad . If $\Delta G^{\circ}>0$, then K is \qquad . If $\Delta \mathrm{G}^{\circ}=0$, then K is \qquad .
A. $>1,<1,=1$
B. $<1,>1,=1$
C. $<0,>0,=0$
D. $>0,<0,=0$
E. $<1,>1,=0$
7. The $\Delta H_{\text {sublimation }}$ of I_{2} is $60.46 \mathrm{~kJ} / \mathrm{mol}$, while its $\Delta H_{\text {vaporization }}$ is $41.71 \mathrm{~kJ} / \mathrm{mol}$. What is the $\Delta H_{\text {fusion }}$ of I_{2} ?
A. $102.17 \mathrm{~kJ} / \mathrm{mol}$
B. $-102.17 \mathrm{~kJ} / \mathrm{mol}$
C. $18.75 \mathrm{~kJ} / \mathrm{mol}$
D. $-18.75 \mathrm{~kJ} / \mathrm{mol}$
E. Insufficient information
8. When a conductance cell was filled with 0.0025 M solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$, its resistance was 326Ω. If the cell constant is $0.2281 \mathrm{~cm}^{-1}$, the conductivity (in $\Omega^{-1} \mathrm{~cm}^{-1}$) of $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution is
A. 4.997×10^{-4}
B. 5.997×10^{-4}
C. 7.997×10^{-4}
D. 3.997×10^{-4}
E. 6.997×10^{-4}
9. Which of the following expressions is correct?
A. $\Lambda_{\mathrm{o}}\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)=3 \lambda_{\mathrm{o}}^{+}\left(\mathrm{Al}^{3+}\right)+2 \lambda_{\mathrm{o}}^{-}\left(\mathrm{SO}_{4}^{2-}\right)$
B. $\Lambda_{o}\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)=\lambda_{\mathrm{o}}^{+}\left(\mathrm{Al}^{3+}\right)+\lambda_{\mathrm{o}}^{-}\left(\mathrm{SO}_{4}^{2-}\right)$
C. $\Lambda_{0}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=\Lambda_{\mathrm{o}}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)-\Lambda_{\mathrm{o}}(\mathrm{NaCl})+\Lambda_{\mathrm{o}}(\mathrm{NaOH})$
D. $\Lambda_{\mathrm{o}}\left(\mathrm{FeSO}_{4}\right)=2 \lambda_{\mathrm{o}}^{+}\left(\mathrm{Fe}^{2+}\right)+2 \lambda_{\mathrm{o}}^{-}\left(\mathrm{SO}_{4}^{2-}\right)$
E. $\quad \Lambda_{0}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=\Lambda_{0}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)-\Lambda_{0}(\mathrm{NaOH})-\Lambda_{\mathrm{o}}(\mathrm{NaCl})$
10. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{3}(\mathrm{~g})$ proceeds as a first order reaction. Which equation below best gives the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ versus time profile?
A. $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}{\mathrm{t}_{0.5}}$
B. $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\mathrm{kt}$
C. $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0} \mathrm{e}^{-\mathrm{kt}}$
D. $\frac{1}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}=\frac{1}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0}}+\mathrm{kt}$
E. Any of the above

SECTION B

There are FOUR questions in this section. Answer all Questions.

QUESTION 1

State whether each of the following statements is true or false. If false either correct it or state briefly the reason for its being false.
(a) $w=\oint d w=0$ and $\Delta H=\oint d H=0$
(b) The compressibility factor, $\mathrm{Z}>1$ for many gases at high pressures is attributed to finite size of gas molecules and repulsive forces.
(c) $\Delta \mathrm{H}_{\text {combustion }}=\Delta \mathrm{U}_{\text {combustion }}$ for the combustion reaction $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(/)$
(d) For the reaction $2 \mathrm{C}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g}), \Delta \mathrm{H}_{\text {reaction }}^{0}=\Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{CO}(\mathrm{g}))$
(e) For a perfect crystalline substance, $\mathrm{S}_{0^{\circ} \mathrm{C}}=0$.
(f) $\left(\frac{\partial G}{\partial P}\right)_{T}=V$ and $\left(\frac{\partial \Delta G}{\partial T}\right)_{P}=-\Delta S$
(g) According to Trouton's law, the entropy of vaporisation at normal boiling point of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and water is approximately equal to $88 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

QUESTION 2

(a) State whether $q, w, \Delta U, \Delta H$ and ΔS are positive, negative or zero in adiabatic compression of an ideal gas.
(b) A sample consisting of 2.00 mol argon (assume to behave as ideal gas) is expanded reversibly and isothermally at $0^{\circ} \mathrm{C}$ from $22.4 \mathrm{dm}^{3}$ to $44.8 \mathrm{dm}^{3}$. For this process, calculate $\mathrm{q}, \mathrm{w} \Delta \mathrm{U}$ and $\Delta \mathrm{H}$.

QUESTION 3

(a) Estimate the enthalpy change of formation for $\mathrm{NH}_{3}(\mathrm{~g})$ at $100^{\circ} \mathrm{C}$ given:
$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g}), \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(25^{\circ} \mathrm{C}\right)=-46.11 \mathrm{kJmol}^{-1}$
$\mathrm{C}_{\mathrm{p}}\left(\mathrm{N}_{2}, \mathrm{~g}\right)=29.12 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{C}_{\mathrm{p}}\left(\mathrm{H}_{2}, \mathrm{~g}\right)=28.82 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{C}_{\mathrm{p}}\left(\mathrm{NH}_{3}, \mathrm{~g}\right)=35.06 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(b) Calculate ΔG° for 1 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ decomposition at 298 K , given $\mathrm{K}_{\mathrm{p}}=0.163$. If $\Delta \mathrm{S}^{0}$ for the reaction is $184.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at 298 K , calculate $\Delta \mathrm{H}^{\circ}$ at 298 K .
(c) The equilibrium constant of the reaction
$\left.\left.\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}\right) \mathrm{g}\right)+\mathrm{Cl}_{2}(\mathrm{~g})$
was determined as a function of temperature and the data was fitted using the linear form of the van't Hoff isochore and the result was:
$\ln K_{p}=\frac{14080}{T}+17.85$
Use these results to obtain $\Delta H^{\circ}, \Delta S^{\circ}$ and ΔG°.
(d) Is the reaction in (c) above endothermic or exothermic? Give a reason for you answer. Which linear plot A or B in the diagram below best represents this reaction?

QUESTION 4

[20]
(a) Explain briefly why conductivity, κ, is not the most convenient quantity to use for the study of electrolytic conduction.
(b) The molar conductivities at infinite dilution (in $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$) of $\mathrm{NaCl}, \mathrm{HCOONa}$ and HCl are $126.4,104.6$ and 426.1 , respectively, at $25^{\circ} \mathrm{C}$. The molar conductivity of the carboxylic acid, HCOOH , at a concentration of 0.100 M is $50.5 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. Calculate the following:
(i) molar conductivity at infinite dilution, Λ_{0}, of HCOOH .
(ii) dissociation constant K_{a} and the pH of the acid solution.
(c) State the two functions of a salt bridge in an electrochemical cell.
(d) Given the following electrochemical cell notation
$\mathrm{Pt}\left|\mathrm{Ti}^{3+}(0.1 \mathrm{~m}), \mathrm{Ti}^{4+}(0.1 \mathrm{~m})\right|\left|\mathrm{Cu}^{+}(0.1 \mathrm{~m})\right| \mathrm{Cu}(\mathrm{s})$
(i) Deduce the overall chemical reaction of the electrochemical cell.
(ii) If the emf of the cell, $\mathrm{E}_{\text {cell, }}$, is 0.442 V at $25^{\circ} \mathrm{C}$, calculate $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ for the reaction if the temperature coefficient of the emf is $-1.25 \times 10^{-4} \mathrm{VK}^{-1}$ at this temperature.
(6)

QUESTION 5

(a) What is the overall order of the reaction described by each of the rate expressions below? State the units of the rate coefficient of the rate is in moldm ${ }^{-3} \mathrm{~s}^{-1}$.
(i) Rate $=\mathrm{k} \frac{[\mathrm{A}]^{1.5}}{[\mathrm{~B}]^{1.5}}$
(ii) Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{0.5}[\mathrm{C}]^{1.5}$
(b) Nitrogen pentoxide $\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)$ gas decomposes according to the reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
At 328 K , the rate of the reaction under certain conditions is $0.75 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$. Assuming that none of the intermediates have appreciable concentrations, determine the values of:
(i) $\frac{\mathrm{d}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}$
(ii) $\frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}$
(iii) $\frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}$
(c) The rate of a reaction $\mathrm{A} \rightarrow$ Product(s) is given by

$$
-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{~A}]^{2}
$$

(i) Derive the integrated rate law equation and state assumptions involved. (7)
(ii) Deduce the expression for the half-life of A showing your working.

LIST OF USEFUL EQUATION AND CONSTANTS

Van der Waals eq ${ }^{\text {n }} . \quad P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}=\frac{R T}{\bar{V}-b}-\frac{a}{\bar{V}^{2}}$

Universal Gas constant	R	$=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Boltzmann's constant,	k	$=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Planck's constant	h	$=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Debye-Hückel's constant,	A	$=0.509\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{1 / 2}$ or mol${ }^{-0.5} \mathrm{~kg}^{0.5}$
Faraday's constant	F	$=96485 \mathrm{C} \mathrm{mol}^{-1}$
Mass of electron	$\mathrm{m}_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg}^{2}$	
Velocity of light	c	$=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Avogadro's constant	$\mathrm{N}_{\mathrm{A}}=$	$=6.022 \times 10^{23}$
1 electron volt (eV)		$=1.602 \times 10^{-19} \mathrm{~J}$

